
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Developing a control system for Peltier cells to be

used in haptic applications

Panagiotis Oikonomou

Engineering Department, New York University

Abu Dhabi, UAE

po524@nyu.edu

A control system for Peltier Units was designed and

implemented. The system is designed to be used for research

applications in thermovinrotactile funneling illusion. The system

is incorporating a peltier cell and a vibration motor to provide

thermal and vibrotactile feedback. The temperature is actively

measured with a thermocouple attached directly to the top of the

Peltier unit. A platform independent control application was

created and a C++ Arduino compatible library to control said unit

was devised.

I. INTRODUCTION

In haptic applications thermoelectric coolers such as
Peltier cells are increasingly utilized. A Peltier cells has the
ability to relatively quickly change the direction of heat flow
across its two ends, by utilizing a PN Junction design (Fig. 1)
[1]. When current flows through in a particular direction, as
the electron (e-) and hole (e+) flow are opposite, they will
travel from one face of the cell to the other, directing the heat
flow accordingly [1]. This current generates a heat flow from
one side to the other, that gives rise to a temperature difference
across the cell [2]. This temperature difference is proportional
to the driving current (I) due to the combined effects of Joule

Heating where the power, P = RI2, and the heat flow (
dQ

dt
) to

from the hot to the cold side at a rate
dQ

dt
= KΔ T, where K is

the thermal conductance of the cell [1].

Fig. 1. Diagram of peltier cell internal structure. Two plates used for

thermal ejection are thermally connected using a P-Type and an N-Type

semiconductor. The semiconductors are connected in one layer and not
connected in the other. Applying a potential difference across the

semiconductors, will cause the flow of the charge carries (holes in the case

of th N-Type, electrons in the case of the P-Type) to move towards the same

direction. The heat is transferred along with the charge carriers and therefore,

as one side becomes hotter, the other cools down. Adapted From [1].

This “rapid” heating and cooling ability of Peltier cells has
been widely explored and utilized in the field of haptics in
recent years. This utilization varies from applications in
virtual reality, where they are implemented in gloves to
stimulate accordingly to the thermal feedback of the scene
objects [3-5], to thermal brain stimulation in comma, and
potential dementia patients to aid in their computer interaction
[6], to creating tactile displays using a combination of

vibration and thermal feedback taking advantage of the
Thermal Grill Illusion observed when a hot and cold body are
in close proximity in contact with the skin [3, 7].

In this paper, the development and testing of a system
responsible for controlling two types of Peltier cells is
described. The first type (T1) is a miniaturized stacked 4 x 4 x
3.8 mm NL2022T unit, while the second type (T2) is a
traditional 15 x 15 x 3.5 mm CP70137 unit. The system was
developed with foresight to be used in haptic applications such
as the above, but also in psychophysical experiments cantered
around the effect of thermal and vibrotactile stimuli in haptic
interactions.

II. SYSTEM OVERVIEW

Two similar systems were created for the different types
of Peltier cells. The general system structured, however, can
be identified as follows (Fig. 2). The peltier cell’s outputs are
connected to a driver circuit that is powered by an individual
power supply at the rated voltage. A thermocouple is attached
to the cell’s face in contact with the skin, using thermal
adhesive. The outputs of the thermocouple are connected to a
logic level, commercially available amplifier circuit with an
embedded temperature sensor for standardization. A heatsink
is used in the other face of the Peltier cell, in order to absorb
the excess heat when cooling and allow it to reach low
temperatures. Using a different motor driver, powered by a
4.5V external power supply, a vibration motor is attached to
the Peltier cell assembly to generate vibrotactile feedback. All
the outputs are then connected to a microcontroller that is
further connected via USB to a computer running a platform
independent controller application. The microcontroller can
be powered either by an external 5-9V power supply or by the
computer’s own USB port. Furthermore, the system is
scalable, allowing for multiple units being connected to the
controller, limited by number of pins of the microcontroller
used. Finally, a C++ library is developed, compatible with the
Arduino IDE that allows the control of the peltier cells and
thermocouple.

Fig. 2. A limited system diagram indicating all the systems in place to

control a peltier Unit.

III. COMPONENT CHARACTERISATION

A. Peltier Cell Type 1 (T1)

Type 1 peltier Cell was characterized using a standardized
thermocouple (see section III.C). The Cell was found to have
a very high transient response, however, the area that it was
occupying was very small. As a result, when the T1 was
attached to the skin, the time required to heat up to a particular
temperature grossly increased because the area of the T1 in
contact with the skin was too small to effectively transfer
thermal energy to or from the contact point.

Furthermore, it was identified that the thermocouple was
to large in relation to the unit, therefore when someone was in
contact with the cell, they would mostly feel the
thermocouple’s pressure than the subtle temperature
difference. Attempts to solder the thermocouple in the side of
the peltier cell, failed as the heat required to solder the
thermocouple was to high and started disordering the p-type
and n-type semiconductors from their top plate conducting
points that damaged the peltier cell.

B. Peltier Cell Type 2 (T2)

Peltier Unit T2, was characterized using a FLIR-T62101
thermal camera and a power supply. The thermal camera
recorded a temperature average of each side of the peltier cells
while the current and voltage were obtained from the power
supply. The voltage applied ranged per specifications from
0.0V to 1.8V (absolute max Voltage 2.0V). As seen in Graph
1 a linear pattern between the current and the temperature
difference was observed to best fit the operation range of the
peltier Cell.

Graph 1. Characterization of Peltier Cell using thermal camera.

Temperature difference (ΔΤ) VS Current (I) were plotted to discover a linear

trend, with best fit equation: 𝛥𝑇 = 0.0437 × 𝐼 − 4.43. The high correlation

value strongly indicated a true trend.

During characterization, however, another pattern was
observed. Even though Temperature difference was strictly
increasing as planned, the average temperature of the peltier
was increasing as well (Graph 2). This increase was due to the
fact that as heat was taken away from the cold side to the
warm, but the thermal gradient established between them
increased the heat flow to the cold side. As a result, positive
thermal feedback was evident between the cold side heating
up due to heat flow, and the Peltier’s Joule Heating of the other
side. This increase in temperature meant that in order to
achieve a temperature difference of 50 ºC the average

temperature of the peltier should be more than 80 ºC (Graph
2), which is not practical for cooling applications.

Graph 2. This grpah shows how the avearge temperature of the peltier cell,

increases with increasing temperature difference. The blue and red data
points are the actual values detected with a thermal camera at specific current

intervals measured with the embedded power supply ammeter. The lines are

the b-spline interpolation of the raw data, calculated using the scipy python

library. The orange line, is an estimation of the avearge temperature, taking

into account the top and bottom temperatures of the cell.

 As a result, the need to have a constant temperature in one
plate became apparent, in order to proceed to cooling
applications as well. Per suggestion of literature [2, 8-11], a
heatsink was attached to one of the faces of the Peltier Cell. In
theory, this would prevent temperature buildup in one side that
was enough to cause the other side to heat up, essentially
achieving having one side at constant temperature.

 Nonetheless, it is worth mentioning that this technique,
even though very practical, after some time of continuous
thermal oscillation, the heatsink has more energy than it can
dissipate in time and therefore the side attached to it starts to
heat up, rendering it useless. To combat this issue, one way
would be to increase the heatsink size. However, since this is
not always an option in haptic applications, another way
would be to change the material of the heatsink to one with a
lower specific heat capacity. An ideal material would have a
thermal transfer rate higher than the thermal transfer rate of
the Peltier Cell. Therefore, it will be able to absorb the heat
and cool down faster than the thermal oscillation of the cell.
Such materials, in order of effectiveness, could be (please note
that they can have other practical considerations):

TABLE I. MATERIALS TO REPLACE ALUMINUM HEATSINK [12]

Material Name Specific Heat Capacity c (J/Kg K)

Lead 129

Gold 129

Tungsten 132

Tin 228

Copper 385

Aluminum 436

C. Thermocouple

The thermocouple was calibrated using a T2 heated up
while recording it’s temperature with a FLIR-T62101 thermal
camera. The T2 had one side stuck to an aluminum heatsink
using thermal adhesive, while the other was attached to the
thermocouple that was in mechanical contact surrounded by
conductive thermal paste. As current was flowing through the
peltier cell, the temperature of its one side was recorded with

the thermal camera and the voltage of the thermocouple was
recorded using the analog input of an Arduino Mega. The
signal was converted using the internal ADC to a 1024 scalar
with limits 0V (GND) to ca. 5V. However, due to the load
created by driving the mosfets in the H-Bridge driver of the
T2, the voltage of the Arduino would periodically fluctuate
with the activation of the digital pins driving the T2. As a
result, the logic Analog Reference Voltage was fed back to the
Arduino’s AREF pin from the thermocouple amplifier (Fig. 8)
to standardize the analog input HIGH reference to the voltage
obtained by the Arduino. The characterization is shown as a
function of voltage in (Graph 3).

Graph 3. The thermocouple characterisation function. As temperature
increased, the thermocouple voltage output was measured using a multimeter,
and the temperature of the thermocouple using a thermal camera. The trend
appears to be linear (High correlation of 𝑅2 = 0.986). The fit equation was
used to calculate the temperature of the peltiers at their operating range.

Thus, through the characterization of the thermocouple the
Temperature T as a function of the voltage V is shown in (Eq
#).

T = 2.23 × 104 × V − 2.85 × 102 (1)

Where V is the potential difference detected by the
Arduino in Volts, and T is the Temperature in ºC of the
Thermocouple.

IV. THERMAL STUDIES

To estimate how the enclosure should be constructed,
thermal simulations were calculated. These simulations were
conducted with Fusion 360’s thermal simulation engine with
the model directly imported. This section contains the main
points and interpretation of the reports. The full documents
can be found in Appendix 1 and 2.

A. Peltier Type 1 (T1) thermal simulation

The construction of the model for T1 is seen in section
V.A. Two scenarios were simulated for T1, with the extreme
temperatures in either side of the peltier cell. As seen in the
simulation output Fig. 3.B, the thermocouple even though in
contact with the base plate of the peltier effectively had the
same temperature. This is very beneficial as the accurate
temperature will be detected properly. The timestamp,
however, when the thermocouple reached the base plate
temperature was 1.0 s, meaning that the temperature reading
would have at least 1 second latency to detect the temperature,
therefore, a design alteration is needed to place the
thermocouple in direct contact with the thermocouple’s base
plate. In the opposite simulation scenario (Fig. 3.A) the same
situation was observed. It is also worth mentioning that in said
simulation set it is assumed that the T2’s cold face temperature

remains constant, unaffected by the hot thermal load, in order
to speed up calculation. Therefore, with a more processing
power, a more accurate thermal model can be created.

Fig. 3. Thermal results analysis of Peltier Type 1 (T1) Cell holder. Parts of

the model have been omited from view to simplify the illustation of the

simulation (i.e. Top cover, wires, heatsink). The thermal simulation is

evaluated at equilibrium. Fig A is the scenrio with 10ºC at the bottom plate

and 70ºC at the top, while Fig B is the opposite scenario. Both Top and

bottom views are provided.

B. Peltier Type 2 (T2) thermal simulation

For T2, two similar simulations were carried out on the 3D
model. After incorporating the closest materials, conductance
values of bonds, and appropriate convection setup in standard
room conditions, the peltier was loaded with 38 ºC in one side
and 23º in the other, with ambient temperature 23 ºC. The
loads were later inverted for the second simulation.

From the results of case B (top face at 38 ºC) (Fig. 4.B) it
is possible that the excess heat created by the top plate, at
equilibrium does not affect the temperature of the bottom
plate, due to the size of the heatsink compared to T1. The
design of the dome around the thermocouple in both cases A
& B, was found to improve its response time to 0.3 s due to
the reflected heat and the fact that the thermocouple is in direct
contact with the peltier cell. It is important to point out, that in
the equilibrium thermal distribution of case A (Fig. 4.A), the
heatsink does not appear to be able to cool down solely by
thermal convection with the surrounding air. This suggests
that the peltier device, in order to be able to achieve a
temperature variation, should not be left on, as it would not be
able to cool down afterwards to a lower temperature.

Fig. 4. Thermal results analysis of Peltier Type 2 (T2) Cell holder. Parts of

the model have been omited from view to simplify the illustation of the
simulation (i.e. connecting wires, wire insulation). The thermal simulation is

evaluated at equilibrium. Fig A is the scenrio with 40ºC at the bottom plate

Appendices/Appendix_1_T1%20Thermal%20Study%20Report.html
Appendices/Appendix_2_Thermal%20Study%20T2%20Report.htm

and 23ºC at the top, while Fig B is the opposite scenario. Both Top and

bottom views are provided.

V. 3D MODELING

Information about all version of the 3D models, as well as
Fusion 360 CAD files and STL files can be found in
documentation.

A. Peltier Cell Type 1 (T1) Attachment cover

To more appropriately control the peltier cells, holding all
the components together, the following enclosures have been
designed in cad. The “Peltier Base MK2” for T1 (Fig. 5) was
the model used in the thermal simulations. It contains a
heatsink on the top side to dissipate the Peltier’s heat, and a
small metal plate at the other side designed to be in contact
with the skin. Attached with thermal adhesive to the metal
plate is the thermocouple. The outer shell of the part is
designed to be 3D printed in PLA or ABS (Thermally tested
as ABS) and is separated into 3 components that can be printed
without support material (Print quality tested in UM2). The
part can be then glued together with the T1 the thermocouple
and the sink and adds structural rigidity to the peltier as well
as provides thermal conductance and convection with the
environment to cool down as needed. Technical drawing can
be found in Appendix 3.

Fig. 5. Rendering of Peltier Cell Type 1 (T1) cover. The materials viewed
are the correct materials of the scene. The original CAD files can be found

in the documentation while the engineering drawings in Appendix 3. Fig A

is an isometric view of the model, while Fig B is an explosion of all of its

components.

B. Peltier Cell Type 1 (T1) Funnelling Illusion Attachment

For T1 a system of cascading multiple peltier cells linearly
together and controlling them (see circuit id section VIII.A)
using a single microcontroller to investigate thermal funneling
was created. This system consists of two components, a peltier
cell housing with dovetailed ends (Fig. 6) that slots directly
into a 2-rail ruled base in order to be arranged properly. In this
design, the thermocouple is directly attached to the top face of
the peltier device for better thermal response time.

Fig. 6. Rendering of Peltier Cell Type 1 (T1) cover and support assembly.
The materials viewed are the correct materials of the scene. The original

CAD files can be found in the documentation. Fig A is an isometric view of

the model, while Fig B is a detailed isometric view of one peltier cell holder

used (Top cover has been ommited).

C. Peltier Cell Type 2 (T2) Attachment Cover

For the T2, a different type of enclosure was designed. It
incorporates two 3D printable parts in ABS or PLA
(Thermally tested as ABS) with supports. The front part (Fig.
7) is used as an end stop to hold the T2 in place along with the
heat sink. The second part slides over the heatsink and T2, and
it contains a pocket to house the thermocouple in contact with
the T2’s front face so as to get an accurate temperature
reading. The bezels on top of the peltier are less than 0.8 mm
in height to that when the peltier unit is touched to the skin it
has maximum contact with it, furthermore, the cover of the
thermocouple provides an additional barrier preventing the tip
of the sensor to touch the hand and confuse the temperature
measurement, as, that way, a fluctuation by the skin
temperature will be induced. The second part also contains a
recessed designed to fit an Adafruit Vibration Motor #1201
that is used to stimulate vibrotactile feedback with the skin.

Fig. 7. Rendering of Peltier Cell Type 2 (T2) cover. The materials viewed
are the correct materials of the scene. The original CAD files can be found

in the documentation while the engineering drawings in Appendix 4. Fig A

is an isometric view of the model, while Fig B is an inverse isometric vew of

the model, to illustrate how the mottor is attached. The top face of the cell

(Fig. A) is in contact with the skin.

VI. T2 FINAL TRANSIENT RESPONSE

The transient response of the Peltier cell T2, was measured
by connecting it to the system and commanding the
temperature to follow a square wave oscillation pattern with
different duty cycles up to the point when the T2 barely
reached the target temperature at the end of the cycle. During
this process it was observed that the transient response of T2
towards cold temperatures is different than the one towards
hot. As a result, the square wave given varied according to the

Appendices/Appendix_3_T1_Holder.pdf
Appendices/Appendix_3_T1_Holder.pdf
Appendices/Appendix_4_T2_Holder.pdf

category tested: i.e. to investigate the cold transient frequency
ftCold (Graph 4), the peltier was heater for a prolonged period
of time to ensure that it reached the maximum temperature and
then cooled for decreasing time intervals over a temperature
difference of 10 ºC (30 ºC to 20 ºC). The opposite occurred to
calculate the hot transient frequency ftHot (Graph 5).

Graph 4. Transient response of Type 2 Peltier Cell aiming for cold
temperature. The wave is a sample. The response rate was calculated by using

the pulse width (pw) at the lower temperature. Specifically, 𝑓𝑡𝑟𝑎𝑛𝑠 =
20𝑜𝐶

𝑝𝑤
=

1.27𝑜𝐶/𝑠.

Graph 5. Transient response of Type 2 Peltier Cell aiming for hot
temperature. The wave is a sample. The response rate was calculated by using

the pulse width (pw) at the lower temperature. Specifically, 𝑓𝑡𝑟𝑎𝑛𝑠 =
20𝑜𝐶

𝑝𝑤
=

1.88𝑜𝐶/𝑠.

Specifically, the transient response frequencies are as follows:

ftCold   =  1.27 oC/s

ftHot  = 1.88 oC/s

As a result, a faster heat up rate was observed.
Furthermore, it is worth noting, that as the T2 attached
heatsink increases in temperature the ftCold decreases as well,
up to the point that it is no longer able to reach temperatures
below a particular threshold. More close examination is
required, however, to characterize such behavior.

VII. CONTROL CODE

To control the Peltier cell assembly a library was
developed in C++ compatible with the Arduino API. This
library contains 4 main classes each responsible for
controlling one element of the assembly (i.e. Peltier Cell,
Thermocouple, Motor) while the fourth class is used to
connect the Arduino with the assembly to the control
application developed in processing (Seen in Section VIII.A).

A complete set of the methods and implementations can be
found in the documentation, this section, briefly outlines the
basic parts of the library’s operation

A. Thermocouple

The Thermocouple class is used to control a thermocouple
connected to an AD-8495 thermocouple amplifier. The output
of the amplifier is connected through a voltage divider to an
analog input pin of the Arduino board. The temperature is
calculated using the method void readTemp() that takes the
analog signal converts it to the equivalent voltage using Eq #
and then uses the thermocouple characteristic equation (Eq #)
to convert the voltage into temperature.

𝑉 = 𝐴𝑖𝑛 ×
𝐴𝑟𝑒𝑓

𝐴𝐷𝐶𝑟𝑒𝑠
2 − 1

(2)

Where V is the thermocouple voltage, 𝐴𝑖𝑛 ∈ [0,1023] ∩
𝑁 is the analog input from the corresponding Arduino Pin,
𝐴𝑟𝑒𝑓 is the Voltage reference of the analog input of the

Arduino (Logic HIGH ~ 5.0V), and ADCres is the Arduino’s
Analog to Digital Converter Resolution, in this case it is fixed
to 10 as it is a 10-bit ADC.

Furthermore, the thermocouple contains a rolling average
function. The user can define the maximum number of data
points (N) to be included in the average in the constructor
(default is 5), and a dynamically allocated array is created to
store the last specified number of data points. When an the
method readTemp() is run, the new value measured is pushed
in the array, as the first element, while the last gets discarded.
The average value changes iteratively according to Eq #.

𝑇̅ =
𝑇0 − 𝑇𝑁−1

𝑁
(3)

Another method void predict(int t) is used to predict the
temperature of the thermocouple according to its gradient in
time int t measured in milliseconds. The gradient is calculated
using Eq #.

ΔΤ

Δ𝑡
=

𝑇0 − 𝑇𝑁−1

𝛿𝑡
(4)

Where δt = N ∗ tres, tres = 10
𝑚𝑠

𝑒𝑙𝑒𝑚𝑒𝑛𝑡
, and 𝑇0 is the

current temperature.

As a result, the predicted temperature in time t
milliseconds is calculated by Eq #.

𝑇(𝑡) =
Δ𝑇

Δ𝑡
× 𝑡 + 𝑇0 (5)

B. Peltier

The Peltier class is used to control both types of Peltier
cells (i.e. T1 and T2). It incorporates a Boolean variable H-
Bridge that when true it is able to drive a peltier connected to
the custom H-Bridge driver (Section VIII, part #) specifically
2 Direction Pin Driver, and when false it is able to drive a
peltier that is connected to a driver with Enable and Direction
pins, like the DRV8838 used in the final system for controlling
T1.

Each instance of the Peltier Class contains a reference to a
Thermocouple object, which corresponds to the thermocouple
physically attached to the Peltier cell. To heat up the cell, the
method void heat(float targetTemp) has the following
pseudocode (The class variable THRESHOLD is defined with
the instantiation of the object):

START heat
 IMPORT targetTemp
 temp <- Thermocouple.read()

 BOOLEAN peltierState <- |targetTemp - temp| > THRESHOLD
 BOOLEAN reverseState <- targetTemp < temp

 IF H-Bridge IS TRUE
 SET peltierPin TO peltierState
 SET reversePin TO reverseState

 ELSE
 SET peltierPin TO peltierState*reverseState
 SET reversePin TO peltierState*(NOT reverseState)
END heat

This code allows the heating up of the Peltier unit for both
types of drivers. As a result, the following Truth table (table
#) can be constructed for Driver Carriers (H-Bridge = false)
and H-Bridge drivers (H-Bridge = true), showing the
direction of the motor according to the target temperature
𝑇𝑡𝑎𝑟𝑔𝑒𝑡 and the current temperature 𝑇0.

TABLE II. MOTOR DIRECTION TRUTH TABLE

Scenario

Driver Carrier H-Bridge Driver

OUT Peltier

Pin

Reverse

Pin

Peltier

Pin

Reverse

Pin

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 < 𝑇0 AND

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

> 𝑇𝐻𝑅

HIGH LOW LOW HIGH COOL

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 > 𝑇0 AND

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

> 𝑇𝐻𝑅

HIGH HIGH HIGH LOW HEAT

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 > 𝑇0 AND

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

< 𝑇𝐻𝑅

LOW LOW LOW LOW IDLE

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 < 𝑇0 AND

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

< 𝑇𝐻𝑅

LOW HIGH LOW LOW IDLE

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇0 AND

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

< 𝑇𝐻𝑅

LOW LOW LOW LOW IDLE

The Peltier Class also implements a method that would
allow the cell to linearly ramp from a one temperature 𝑇𝑖 to
another 𝑇𝑓 in time t milliseconds. This functionality is

implemented in runtime without delay() so that it can be non-
intrusive to the rest of the program running in the Arduino. A
function void rampSet(float Ti, float Tf, int t) was
implemented so that it can be called once and set up the
parameters for a particular ramp. Then, in the body of the loop,
the function void ramp() is called in order to heat the peltier to
the appropriate value at the time it’s called. The pseudocode
for the ramp() function is seen below:

START ramp
 IF onRamp IS TRUE //class variable onRamp is set true when a
 //ramp is set, and false when a ramp is
 //finished
 currentTemp <- Thermocouple.read()
 tempDifference <- Tf – Ti

 // MILLIS() is a function of the Arduino API that returns the time

// from the moment the program started running in milliseconds
 // class variable initialTime is set to the MILLIS() when the
 // rampSet() function was called.
 targetTemp <- ((MILLIS() – initialTime) * tempDifference) / t

 heat(targetTemp)

 IF (targetTemp < toTemp) OR (tempDiff > 0)
 onRamp <- false
END ramp

C. Motor

The Motor Class is a very simple driver class for a motor
connected directly to one PWM pin of the Arduino with an
NPN Logic level transistor or a motor driver that is controlled
by one pin (i.e. A driver carrier whose Direction or Phase pin
is pulled to logic LOW or logic HIGH) connected to it.

The motor class contains a void drive(int PWM) method,
that drives the writes the equivalent PWM signal to the motor
pin.

D. Controller

The controller Class is designed to standardize the way of
communication between the control application and the
Arduino. The communication at both ends happens through
the Serial port of the computer that the Arduino is connected
to. This sketch is designed to read and interpret string
commands of particular format send in the serial port by the
control application (See control application in Section IX),
and then send the target temperature of all the peltier cells, as
well as their current temperature to be graphed.

The way that the interpretation of commands work is by
decoding a very specific structure. The command structure
and function is shown in table #.

TABLE III. COTROLLER COMMANDS

Command ID Function Callback

H <peltier> T <temp> E H

Heats a the peltier cell
int: <peltier> to

temperature float:

<temp>

heat()

I <peltier> E I
Set peltier int:

<peltier> to idle mode
Idle()

R <peltier> F <Ti> T

<Tf> I <time> E
R

Ramp peltier int:

<peltier> from float:

<Ti> to float: <Tf> in

time int:<time> ms

ramp()

A <peltier1> <peltier2>

H <temp1> C <temp2>

T <time> E

A

Alternate Rampling
between <peltier1>

and <peltier2> in time

int: <time> ms

autoRam

p()

V <peltier> T <PWM> V

Vibrate the motor of

peltier int:<peltier> at
int: <PWM>

vibrate()

As it can be seen in table # the controller commands all
have a unique 1-letter identifier at the beginning used to
callback the relevant function that later decodes the rest of the
command String and performs the appropriate action. All the
commands are terminated with the character E, so that the
Arduino will only empty its Serial Input Buffer once it has
detected a complete command. This way if more or less than
one commands are flushed in the buffer during the time the
Arduino is checking for it, it will act appropriately to either
wait or discard the command. The commands are parsed with
string methods, by identifying a control character (e.g. ‘T’,
‘F’, etc.), then reading the value from the first space (‘ ’) after
it to the second one. The substring is then parsed to the
equivalent data type using native methods, and then it is used
in the context of the appropriate command.

The controller class contains dynamically allocated arrays
of 4 types:

1) Peltier: That contains Peltier instances corresponding

to the peltiers connected to the arduino

2) Thermocouple: That contains Thermocouple instances

corresponsing to the thermocuples connected to each peltier

3) Motor: That contains Motor instances corresponding

to the motors at each peltier cell aassembly

4) PeltierControl: this is an array of a custom struct that

contains the appropriate variables to control each peltier (the

struct is seen in the code below.)

It is worth mentioning that the dynamic allocation is not
implemented using the keywords new and delete, as they are
not supported by the Arduino API. Instead, the functions
malloc() and free() are used to assign and free memory space
to pointers.

VIII. CIRCUITS

A. Circuit for T1 Arrangment

To control T1 an Arduino Mega Microcontroller was
preferred because of its high amount of Pulse Width
Modulation (PWM) Enabled pins, that can be used for driving
the motors. Each motor needs only one PWM pin to control it
that is directly connected through a 1KΩ resistor to the base
of a 2N2222 logic level NPN transistor. The collector is
connected to one end of the motor, while the other end is
connected to an external 4.8V power supply. The emitter is
connected directly to the common ground of the circuit. A
diode was added between the terminals of the motor to prevent
back voltage (Fig. 8). The motor circuit can be repeated as
many times as needed for the number of peltier units
connected to the microcontroller.

The T1 was controlled with a low voltage, high current
motor driver carrier, such as the dual channel DRV8833 or the
single channel DRV8838. In the current schematic the
DRV8833 is shown (Fig. 8). The ends of the T1 are connected
to the output pins of the one channel of the driver and two
digital pins were connected to the input channel as shown in
Fig. 8. One of the pins is controlling the phase of the T1 (i.e.
the direction of current flow), the other is controlling the
power (i.e. Turning the motor on or off).

Finally, an AD8495 thermocouple amplifier was used to
read the thermocouple output so that it can be read by the
analog pins of the Arduino. It is worth mentioning that the
reason why the motors are connected to external power
supplies is because the Arduino by itself had a power limit that
was reached when driving the Motors to logic High. This
meant that the voltage of the microcontroller would
momentarily drop to maintain the current flow. This drop
would affect the voltage coming to the amplifier of the
thermocouples introducing an extra instability in the output.
As a result, whenever the motors were in use the thermocouple
output would introduce large fluctuations (±5 ºC) in their

readings. Therefore, initially, a variable capacitor was placed
between the +V and GND terminals of the microcontroller to
smooth out the fluctuations. However, even though the
voltage was not fluctuating, it would still drop an average of
0.1 V when the motor was used. As a result, it was decided to
use an external power supply for the motors and that fixed the
fluctuation problem.

Fig. 8. Circuit schematic for Peltier Cell Type 1 (T1) control. All the

elements are included except the thermocouples that are connected directly

to the inputs of the two AD8495 amplifier units. The amplifier has an

embedded temperature sensor for standardising so that the thermocouple

does not need to be diped in ice cold water for reference. The cirucit shown

is for two peltier Elements with motors and tehrmocouples.

B. Custom H-Bridge Driver for T2

Peltier Cell T2 can draw current up to 7.0 A at 2.0 V, this
characteristic meant that it was really hard to find a
commercial driver that could deliver such a high current at
these low voltages. Therefore, a custom driver was designed
using N-Type logic level Mosfets (IRLB8721). At this point
is worth mentioning that, ideally, replacing two of the four
IRLB8721 Mosfets with 2 PNP Mosfets with a threshold
voltage at around 1.4 ~ 2.0 Volts (𝑉𝑡ℎ ∈ [1.4, 2.0] 𝑉), as they
can be driven with the voltage output of the peltier unit power
supply (Examples of such Mosfets include: SPU09P06PL,
SFT1341-E, or 2SJ681(Q)). Since there was a shortage of
such specific components the circuit seen in Fig. 9 was
designed and built. The H-Bridge driver works at logic level
with two pins from the Arduino, that drive the cell as seen in
Truth table #. A PCP was created for the circuit a, as seen in
Fig. 9.

//Assistive data structure for the Controller Class

struct PeltierControl{

 bool heat;

 bool idle;

 bool autoRamp;

 bool wait;

 float targetTemp;

 float inTime;

 int rampWith;

 unsigned long prevTime;

};

Fig. 9. Custom H-Bridge Driver cirucit. The 4 Mosfters are logic level and

can be directly controlled through the arduino Digital Pins. Each pin output

is attached with a pulldown resistor that connects the gate to the ground.

Fig. 10. The PCB CAD output of the circuitboard of the circuit shown in Fig.

9. The board has a GND poor in both sides so that to minimise the

connections needed. The poor is not shown in the diagram.

C. Circuit for T2 Arrangement

For the circuit of T2 the thermocouples and motors are
connected in a similar fashion in seen in Fig. 9. The peltier
cells, however, are driven using the custom H-Bridge driver
seen in Section # Part #, where the 2.0 V power Supply is
connected to the VCC pin, the ground of the power supply is
connected to the ground of the Arduino and the GND pin of
the driver. Then two digital pins from the are connected
directly from the Arduino to the drivers IN1 and IN2 pins. The
T2’s terminals are connected to the M+ and M- of the driver.

IX. CONTROL APPLICATION

To effectively control the peltier Cells a control
application was developed in Java, so that it is platform
independent. The application, “Grapher MK3,” includes a
graph element at the top that directly reads the output from the
Arduino through the Serial port. These values are the reading
from the thermocouple of all the connected Peltier Cells, and
the target temperature of all the cells. At the left side there are
numbered circular elements that change transparency
according to the corresponding vibration motor.

Below there is a series of control elements that set the
temperature of each peltier accordingly. Below that there are
two graphs that can be altered so that to send a real-time
temperature and/or vibration change to the Arduino. The
pulses sent, are saved as .txt files using a native file dialog and
can be loaded back for easy and fast access during
psychophysical experiments. The application also possesses a
limited command line interface for the commands shown in
Appendix 5, that are useful in controlling various features of
the application. The application is fully customizable by
setting up the port using the PORT command, and by setting
up the number of cells connected to the Arduino using the
PELTIERNUM command.

Fig. 11. A screencast of the Control Application Graphical User Interface

(GUI). At the top is the part where the output from the arduino is projected,
using the graph and the numbered lights. The elements at the top (i.e. sliders,

buttons, etc.) are used to directly control the attributes of the connected

Peltier Cells or Vibration Motors. The bottom section is used to create graphs

designed to be send to the arduino directly. The lines snap to the grid to ease

with the design process.

X. IMPLICATIONS FOR FURTHER RESEARCH

To further develop this project, it is suggested that a driver
for the large Peltier Cells is created using the PNP Mosfets
previously described with two optocouplers controlling them
to isolate the circuit. Furthermore, a substitution of the
heatsink size and/or material would be appropriate to prevent
the self-destructive behavior of the peltier Unit. Furthermore,
the application should be further optimized after undergoing
some usage testing during true experimental procedures, to
optimize the workflow, and minimize the setup time. Also, an
alternative for the thermocouple as a means of measuring
temperature should be explored to minimize the top ledge
footprint of the unit. It is suggested that either the
thermocouple is heated and pushed thought the plastic
insulation on the underside of the top face of the Peltier Cell.

XI. REFERENCE

[1] F. J. DiSalvo, "Thermoelectric Cooling and Power

Generation," Science, vol. 285, no. 5428, p. 703,

1999, doi: 10.1126/science.285.5428.703.

[2] C. Alaoui and Z. M. Salameh, "Solid state heater

cooler: Design and evaluation," 2001: Institute of

Electrical and Electronics Engineers Inc., pp. 139-

145, doi: 10.1109/LESCPE.2001.941640.

[3] G. Chernyshov, K. Ragozin, C. Caremel, and K.

Kunze, "Hand motion prediction for just-in-time

thermo-haptic feedback," S. N. Spencer, Ed., 2018:

Association for Computing Machinery, doi:

10.1145/3281505.3281573.

[4] G. Gioioso, M. Pozzi, M. Aurilio, B. Peccerillo, G.

Spagnoletti, and D. Prattichizzo. Using Wearable

Haptics for Thermal Discrimination in Virtual

Reality Scenarios, vol. 535, pp. 144-148, 2019.

[5] H. Morimitsu and S. Katsura, "Two-degree-of-

freedom robust temperature control of peltier device

based on heat disturbance observer," (in English),

Appendices/Appendix_5_Control%20Application%20Commands.pdf

Electr Eng Jpn, Article vol. 184, no. 1, pp. 66-74,

2013, doi: 10.1002/eej.22282.

[6] J. Gabriel, A. Silva, M. T. Restivo, and I. Pinheiro,

"Brain stimulation using an haptic thermal device,"

2013, pp. 32-35, doi:

10.1109/ExpAt.2013.6703025.

[7] T. H. Yang, G. H. Yang, D. S. Kwon, and S. C.

Kang, "Implementing compact tactile display for

fingertips with multiple vibrotactile actuator and

thermoelectric module," 2007, pp. 580-581, doi:

10.1109/WHC.2007.72.

 [8] H. Morimitsu and S. Katsura, "Frequency response

analysis of observer-based thermal control system of

peltier device," 2011, pp. 256-261, doi:

10.1109/HSI.2011.5937375.

[9] Y. Osawa, H. Morimitsu, and S. Katsura, "Control

of thermal conductance with detection of single

contacting part for rendering thermal sensation," (in

English), IEEJ J. Ind. Appl., Article vol. 5, no. 2, pp.

101-107, 2016, doi: 10.1541/ieejjia.5.101.

[10] A. Savin, A. Floca, M. Trifanescu, N. Ionescu, and

A. Visan, "Designing a cold plate used in rapid

freeze prototyping technology," Advanced

Materials Research, vol. 1036, pp. 648-51, / 2014,

doi: 10.4028/www.scientific.net/AMR.1036.648.

[11] R. A. Taylor and G. L. Solbrekken, "Comprehensive

system-level optimization of thermoelectric devices

for electronic cooling applications," IEEE

Transactions on Components and Packaging

Technologies, vol. 31, no. 1, pp. 23-31, 2008, doi:

10.1109/TCAPT.2007.906333.

[12] Upper Canada District School Board. "Specific Heat

Capacity Table." ucdsb.on.ca.

http://www2.ucdsb.on.ca/tiss/stretton/database/Spe

cific_Heat_Capacity_Table.html (accessed JUL 30,

2019).

www.scientific.net/AMR.1036.648
http://www2.ucdsb.on.ca/tiss/stretton/database/Specific_Heat_Capacity_Table.html
http://www2.ucdsb.on.ca/tiss/stretton/database/Specific_Heat_Capacity_Table.html

	I. Introduction
	II. System Overview
	III. Component Characterisation
	A. Peltier Cell Type 1 (T1)
	B. Peltier Cell Type 2 (T2)
	C. Thermocouple

	IV. Thermal Studies
	A. Peltier Type 1 (T1) thermal simulation
	B. Peltier Type 2 (T2) thermal simulation

	V. 3D Modeling
	A. Peltier Cell Type 1 (T1) Attachment cover
	B. Peltier Cell Type 1 (T1) Funnelling Illusion Attachment
	C. Peltier Cell Type 2 (T2) Attachment Cover

	VI. T2 Final Transient Response
	VII. Control Code
	A. Thermocouple
	B. Peltier
	C. Motor
	D. Controller
	1) Peltier: That contains Peltier instances corresponding to the peltiers connected to the arduino
	2) Thermocouple: That contains Thermocouple instances corresponsing to the thermocuples connected to each peltier
	3) Motor: That contains Motor instances corresponding to the motors at each peltier cell aassembly
	4) PeltierControl: this is an array of a custom struct that contains the appropriate variables to control each peltier (the struct is seen in the code below.)

	VIII. Circuits
	A. Circuit for T1 Arrangment
	B. Custom H-Bridge Driver for T2
	C. Circuit for T2 Arrangement

	IX. Control Application
	X. Implications for Further Research
	XI. Reference

