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A control system for Peltier Units was designed and 

implemented. The system is designed to be used for research 

applications in thermovinrotactile funneling illusion. The system 

is incorporating a peltier cell and a vibration motor to provide 

thermal and vibrotactile feedback. The temperature is actively 

measured with a thermocouple attached directly to the top of the 

Peltier unit. A platform independent control application was 

created and a C++ Arduino compatible library to control said unit 

was devised.  

I. INTRODUCTION 

In haptic applications thermoelectric coolers such as 
Peltier cells are increasingly utilized. A Peltier cells has the 
ability to relatively quickly change the direction of heat flow 
across its two ends, by utilizing a PN Junction design (Fig. 1) 
[1]. When current flows through in a particular direction, as 
the electron (e-) and hole (e+) flow are opposite, they will 
travel from one face of the cell to the other, directing the heat 
flow accordingly [1]. This current generates a heat flow from 
one side to the other, that gives rise to a temperature difference 
across the cell [2]. This temperature difference is proportional 
to the driving current (I) due to the combined effects of Joule 

Heating where the power, P = RI2, and the heat flow (
dQ

dt
) to 

from the hot to the cold side at a rate 
dQ

dt
= KΔ T, where K is 

the thermal conductance of the cell [1].  

 

Fig. 1. Diagram of peltier cell internal structure. Two plates used for 

thermal ejection are thermally connected using a P-Type and an N-Type 

semiconductor. The semiconductors are connected in one layer and not 
connected in the other. Applying a potential difference across the 

semiconductors, will cause the flow of the charge carries (holes in the case 

of th N-Type, electrons in the case of the P-Type) to move towards the same 

direction. The heat is transferred along with the charge carriers and therefore, 

as one side becomes hotter, the other cools down. Adapted From [1]. 

This “rapid” heating and cooling ability of Peltier cells has 
been widely explored and utilized in the field of haptics in 
recent years. This utilization varies from applications in 
virtual reality, where they are implemented in gloves to 
stimulate accordingly to the thermal feedback of the scene 
objects [3-5], to thermal brain stimulation in comma, and 
potential dementia patients to aid in their computer interaction 
[6], to creating tactile displays using a combination of 

vibration and thermal feedback taking advantage of the 
Thermal Grill Illusion observed when a hot and cold body are 
in close proximity in contact with the skin [3, 7]. 

In this paper, the development and testing of a system 
responsible for controlling two types of Peltier cells is 
described. The first type (T1) is a miniaturized stacked 4 x 4 x 
3.8 mm NL2022T unit, while the second type (T2) is a 
traditional 15 x 15 x 3.5 mm CP70137 unit. The system was 
developed with foresight to be used in haptic applications such 
as the above, but also in psychophysical experiments cantered 
around the effect of thermal and vibrotactile stimuli in haptic 
interactions. 

II. SYSTEM OVERVIEW 

Two similar systems were created for the different types 
of Peltier cells. The general system structured, however, can 
be identified as follows (Fig. 2). The peltier cell’s outputs are 
connected to a driver circuit that is powered by an individual 
power supply at the rated voltage. A thermocouple is attached 
to the cell’s face in contact with the skin, using thermal 
adhesive. The outputs of the thermocouple are connected to a 
logic level, commercially available amplifier circuit with an 
embedded temperature sensor for standardization. A heatsink 
is used in the other face of the Peltier cell, in order to absorb 
the excess heat when cooling and allow it to reach low 
temperatures. Using a different motor driver, powered by a 
4.5V external power supply, a vibration motor is attached to 
the Peltier cell assembly to generate vibrotactile feedback. All 
the outputs are then connected to a microcontroller that is 
further connected via USB to a computer running a platform 
independent controller application. The microcontroller can 
be powered either by an external 5-9V power supply or by the 
computer’s own USB port. Furthermore, the system is 
scalable, allowing for multiple units being connected to the 
controller, limited by number of pins of the microcontroller 
used. Finally, a C++ library is developed, compatible with the 
Arduino IDE that allows the control of the peltier cells and 
thermocouple.  

 



Fig. 2. A limited system diagram indicating all the systems in place to 

control a peltier Unit. 

III. COMPONENT CHARACTERISATION 

A. Peltier Cell Type 1 (T1) 

Type 1 peltier Cell was characterized using a standardized 
thermocouple (see section III.C). The Cell was found to have 
a very high transient response, however, the area that it was 
occupying was very small. As a result, when the T1 was 
attached to the skin, the time required to heat up to a particular 
temperature grossly increased because the area of the T1 in 
contact with the skin was too small to effectively transfer 
thermal energy to or from the contact point.  

Furthermore, it was identified that the thermocouple was 
to large in relation to the unit, therefore when someone was in 
contact with the cell, they would mostly feel the 
thermocouple’s pressure than the subtle temperature 
difference. Attempts to solder the thermocouple in the side of 
the peltier cell, failed as the heat required to solder the 
thermocouple was to high and started disordering the p-type 
and n-type semiconductors from their top plate conducting 
points that damaged the peltier cell.  

B. Peltier Cell Type 2 (T2) 

Peltier Unit T2, was characterized using a FLIR-T62101 
thermal camera and a power supply. The thermal camera 
recorded a temperature average of each side of the peltier cells 
while the current and voltage were obtained from the power 
supply. The voltage applied ranged per specifications from 
0.0V to 1.8V (absolute max Voltage 2.0V). As seen in Graph 
1 a linear pattern between the current and the temperature 
difference was observed to best fit the operation range of the 
peltier Cell.  

 

Graph 1. Characterization of Peltier Cell using thermal camera. 

Temperature difference (ΔΤ) VS Current (I) were plotted to discover a linear 

trend, with best fit equation: 𝛥𝑇 = 0.0437 × 𝐼 − 4.43. The high correlation 

value strongly indicated a true trend. 

During characterization, however, another pattern was 
observed. Even though Temperature difference was strictly 
increasing as planned, the average temperature of the peltier 
was increasing as well (Graph 2). This increase was due to the 
fact that as heat was taken away from the cold side to the 
warm, but the thermal gradient established between them 
increased the heat flow to the cold side. As a result, positive 
thermal feedback was evident between the cold side heating 
up due to heat flow, and the Peltier’s Joule Heating of the other 
side. This increase in temperature meant that in order to 
achieve a temperature difference of 50 ºC the average 

temperature of the peltier should be more than 80 ºC (Graph 
2), which is not practical for cooling applications. 

 

Graph 2. This grpah shows how the avearge temperature of the peltier cell, 

increases with increasing temperature difference.  The blue and red data 
points are the actual values detected with a thermal camera at specific current 

intervals measured with the embedded power supply ammeter.  The lines are 

the b-spline interpolation of the raw data, calculated using the scipy python 

library. The orange line, is an estimation of the avearge temperature, taking 

into account the top and bottom temperatures of the cell.   

 As a result, the need to have a constant temperature in one 
plate became apparent, in order to proceed to cooling 
applications as well. Per suggestion of literature [2, 8-11], a 
heatsink was attached to one of the faces of the Peltier Cell. In 
theory, this would prevent temperature buildup in one side that 
was enough to cause the other side to heat up, essentially 
achieving having one side at constant temperature. 

 Nonetheless, it is worth mentioning that this technique, 
even though very practical, after some time of continuous 
thermal oscillation, the heatsink has more energy than it can 
dissipate in time and therefore the side attached to it starts to 
heat up, rendering it useless. To combat this issue, one way 
would be to increase the heatsink size. However, since this is 
not always an option in haptic applications, another way 
would be to change the material of the heatsink to one with a 
lower specific heat capacity. An ideal material would have a 
thermal transfer rate higher than the thermal transfer rate of 
the Peltier Cell. Therefore, it will be able to absorb the heat 
and cool down faster than the thermal oscillation of the cell. 
Such materials, in order of effectiveness, could be (please note 
that they can have other practical considerations):  

TABLE I.  MATERIALS TO REPLACE ALUMINUM HEATSINK [12] 

Material Name Specific Heat Capacity c (J/Kg K) 

Lead 129 

Gold 129 

Tungsten 132 

Tin 228 

Copper 385 

Aluminum 436 

 

C. Thermocouple 

The thermocouple was calibrated using a T2 heated up 
while recording it’s temperature with a FLIR-T62101 thermal 
camera. The T2 had one side stuck to an aluminum heatsink 
using thermal adhesive, while the other was attached to the 
thermocouple that was in mechanical contact surrounded by 
conductive thermal paste. As current was flowing through the 
peltier cell, the temperature of its one side was recorded with 



the thermal camera and the voltage of the thermocouple was 
recorded using the analog input of an Arduino Mega. The 
signal was converted using the internal ADC to a 1024 scalar 
with limits 0V (GND) to ca. 5V. However, due to the load 
created by driving the mosfets in the H-Bridge driver of the 
T2, the voltage of the Arduino would periodically fluctuate 
with the activation of the digital pins driving the T2. As a 
result, the logic Analog Reference Voltage was fed back to the 
Arduino’s AREF pin from the thermocouple amplifier (Fig. 8) 
to standardize the analog input HIGH reference to the voltage 
obtained by the Arduino. The characterization is shown as a 
function of voltage in (Graph 3). 

 

Graph 3. The thermocouple characterisation function. As temperature 
increased, the thermocouple voltage output was measured using a multimeter, 
and the temperature of the thermocouple using a thermal camera. The trend 
appears to be linear (High correlation of 𝑅2 = 0.986). The fit equation was 
used to calculate the temperature of the peltiers at their operating range. 

Thus, through the characterization of the thermocouple the 
Temperature T as a function of the voltage V is shown in (Eq 
#). 

T = 2.23 × 104 × V − 2.85 × 102 (1) 

Where V is the potential difference detected by the 
Arduino in Volts, and T is the Temperature in ºC of the 
Thermocouple. 

IV. THERMAL STUDIES 

To estimate how the enclosure should be constructed, 
thermal simulations were calculated. These simulations were 
conducted with Fusion 360’s thermal simulation engine with 
the model directly imported. This section contains the main 
points and interpretation of the reports. The full documents 
can be found in Appendix 1 and 2. 

A. Peltier Type 1 (T1) thermal simulation 

The construction of the model for T1 is seen in section 
V.A. Two scenarios were simulated for T1, with the extreme 
temperatures in either side of the peltier cell. As seen in the 
simulation output Fig. 3.B, the thermocouple even though in 
contact with the base plate of the peltier effectively had the 
same temperature. This is very beneficial as the accurate 
temperature will be detected properly. The timestamp, 
however, when the thermocouple reached the base plate 
temperature was 1.0 s, meaning that the temperature reading 
would have at least 1 second latency to detect the temperature, 
therefore, a design alteration is needed to place the 
thermocouple in direct contact with the thermocouple’s base 
plate. In the opposite simulation scenario (Fig. 3.A) the same 
situation was observed. It is also worth mentioning that in said 
simulation set it is assumed that the T2’s cold face temperature 

remains constant, unaffected by the hot thermal load, in order 
to speed up calculation. Therefore, with a more processing 
power, a more accurate thermal model can be created.  

 

Fig. 3. Thermal results analysis of Peltier Type 1 (T1) Cell holder. Parts of 

the model have been omited from view to simplify the illustation of the 

simulation (i.e. Top cover, wires, heatsink). The thermal simulation is 

evaluated at equilibrium. Fig A is the scenrio with 10ºC at the bottom plate 

and 70ºC at the top, while Fig B is the opposite scenario. Both Top and 

bottom views are provided. 

B. Peltier Type 2 (T2) thermal simulation 

For T2, two similar simulations were carried out on the 3D 
model. After incorporating the closest materials, conductance 
values of bonds, and appropriate convection setup in standard 
room conditions, the peltier was loaded with 38 ºC in one side 
and 23º in the other, with ambient temperature 23 ºC. The 
loads were later inverted for the second simulation. 

From the results of case B (top face at 38 ºC) (Fig. 4.B) it 
is possible that the excess heat created by the top plate, at 
equilibrium does not affect the temperature of the bottom 
plate, due to the size of the heatsink compared to T1. The 
design of the dome around the thermocouple in both cases A 
& B, was found to improve its response time to 0.3 s due to 
the reflected heat and the fact that the thermocouple is in direct 
contact with the peltier cell. It is important to point out, that in 
the equilibrium thermal distribution of case A (Fig. 4.A), the 
heatsink does not appear to be able to cool down solely by 
thermal convection with the surrounding air. This suggests 
that the peltier device, in order to be able to achieve a 
temperature variation, should not be left on, as it would not be 
able to cool down afterwards to a lower temperature.  

  

Fig. 4. Thermal results analysis of Peltier Type 2 (T2) Cell holder. Parts of 

the model have been omited from view to simplify the illustation of the 
simulation (i.e. connecting wires, wire insulation). The thermal simulation is 

evaluated at equilibrium. Fig A is the scenrio with 40ºC at the bottom plate 

Appendices/Appendix_1_T1%20Thermal%20Study%20Report.html
Appendices/Appendix_2_Thermal%20Study%20T2%20Report.htm


and 23ºC at the top, while Fig B is the opposite scenario. Both Top and 

bottom views are provided.  

V. 3D MODELING 

Information about all version of the 3D models, as well as 
Fusion 360 CAD files and STL files can be found in 
documentation.  

A. Peltier Cell Type 1 (T1) Attachment cover 

To more appropriately control the peltier cells, holding all 
the components together, the following enclosures have been 
designed in cad. The “Peltier Base MK2” for T1 (Fig. 5) was 
the model used in the thermal simulations. It contains a 
heatsink on the top side to dissipate the Peltier’s heat, and a 
small metal plate at the other side designed to be in contact 
with the skin. Attached with thermal adhesive to the metal 
plate is the thermocouple. The outer shell of the part is 
designed to be 3D printed in PLA or ABS (Thermally tested 
as ABS) and is separated into 3 components that can be printed 
without support material (Print quality tested in UM2). The 
part can be then glued together with the T1 the thermocouple 
and the sink and adds structural rigidity to the peltier as well 
as provides thermal conductance and convection with the 
environment to cool down as needed. Technical drawing can 
be found in Appendix 3. 

 

Fig. 5. Rendering of Peltier Cell Type 1 (T1) cover. The materials viewed 
are the correct materials of the scene. The original CAD files can be found 

in the documentation while the engineering drawings in Appendix 3. Fig A 

is an isometric view of the model, while Fig B is an explosion of all of its 

components. 

B. Peltier Cell Type 1 (T1) Funnelling Illusion Attachment 

For T1 a system of cascading multiple peltier cells linearly 
together and controlling them (see circuit id section VIII.A) 
using a single microcontroller to investigate thermal funneling 
was created. This system consists of two components, a peltier 
cell housing with dovetailed ends (Fig. 6) that slots directly 
into a 2-rail ruled base in order to be arranged properly. In this 
design, the thermocouple is directly attached to the top face of 
the peltier device for better thermal response time. 

 

Fig. 6. Rendering of Peltier Cell Type 1 (T1) cover and support assembly. 
The materials viewed are the correct materials of the scene. The original 

CAD files can be found in the documentation. Fig A is an isometric view of 

the model, while Fig B is a detailed isometric view of one peltier cell holder 

used (Top cover has been ommited). 

C. Peltier Cell Type 2 (T2) Attachment Cover 

For the T2, a different type of enclosure was designed. It 
incorporates two 3D printable parts in ABS or PLA 
(Thermally tested as ABS) with supports. The front part (Fig. 
7) is used as an end stop to hold the T2 in place along with the 
heat sink. The second part slides over the heatsink and T2, and 
it contains a pocket to house the thermocouple in contact with 
the T2’s front face so as to get an accurate temperature 
reading. The bezels on top of the peltier are less than 0.8 mm 
in height to that when the peltier unit is touched to the skin it 
has maximum contact with it, furthermore, the cover of the 
thermocouple provides an additional barrier preventing the tip 
of the sensor to touch the hand and confuse the temperature 
measurement, as, that way, a fluctuation by the skin 
temperature will be induced. The second part also contains a 
recessed designed to fit an Adafruit Vibration Motor #1201 
that is used to stimulate vibrotactile feedback with the skin. 

 

Fig. 7. Rendering of Peltier Cell Type 2 (T2) cover. The materials viewed 
are the correct materials of the scene. The original CAD files can be found 

in the documentation while the engineering drawings in Appendix 4. Fig A 

is an isometric view of the model, while Fig B is an inverse isometric vew of 

the model, to illustrate how the mottor is attached. The top face of the cell 

(Fig. A) is in contact with the skin.  

VI. T2 FINAL TRANSIENT RESPONSE 

The transient response of the Peltier cell T2, was measured 
by connecting it to the system and commanding the 
temperature to follow a square wave oscillation pattern with 
different duty cycles up to the point when the T2 barely 
reached the target temperature at the end of the cycle. During 
this process it was observed that the transient response of T2 
towards cold temperatures is different than the one towards 
hot. As a result, the square wave given varied according to the 

Appendices/Appendix_3_T1_Holder.pdf
Appendices/Appendix_3_T1_Holder.pdf
Appendices/Appendix_4_T2_Holder.pdf


category tested: i.e. to investigate the cold transient frequency 
ftCold (Graph 4), the peltier was heater for a prolonged period 
of time to ensure that it reached the maximum temperature and 
then cooled for decreasing time intervals over a temperature 
difference of 10 ºC (30 ºC to 20 ºC). The opposite occurred to 
calculate the hot transient frequency ftHot (Graph 5). 

 

Graph 4. Transient response of Type 2 Peltier Cell aiming for cold 
temperature. The wave is a sample. The response rate was calculated by using 

the pulse width (pw) at the lower temperature. Specifically, 𝑓𝑡𝑟𝑎𝑛𝑠 =
20𝑜𝐶

𝑝𝑤
=

1.27𝑜𝐶/𝑠. 

 

Graph 5. Transient response of Type 2 Peltier Cell aiming for hot 
temperature. The wave is a sample. The response rate was calculated by using 

the pulse width (pw) at the lower temperature. Specifically, 𝑓𝑡𝑟𝑎𝑛𝑠 =
20𝑜𝐶

𝑝𝑤
=

1.88𝑜𝐶/𝑠. 

Specifically, the transient response frequencies are as follows: 

ftCold   =  1.27 oC/s 

ftHot  = 1.88 oC/s 

As a result, a faster heat up rate was observed. 
Furthermore, it is worth noting, that as the T2 attached 
heatsink increases in temperature the ftCold decreases as well, 
up to the point that it is no longer able to reach temperatures 
below a particular threshold. More close examination is 
required, however, to characterize such behavior.  

VII. CONTROL CODE 

To control the Peltier cell assembly a library was 
developed in C++ compatible with the Arduino API. This 
library contains 4 main classes each responsible for 
controlling one element of the assembly (i.e. Peltier Cell, 
Thermocouple, Motor) while the fourth class is used to 
connect the Arduino with the assembly to the control 
application developed in processing (Seen in Section VIII.A). 

A complete set of the methods and implementations can be 
found in the documentation, this section, briefly outlines the 
basic parts of the library’s operation 

A. Thermocouple 

The Thermocouple class is used to control a thermocouple 
connected to an AD-8495 thermocouple amplifier. The output 
of the amplifier is connected through a voltage divider to an 
analog input pin of the Arduino board. The temperature is 
calculated using the method void readTemp() that takes the 
analog signal converts it to the equivalent voltage using Eq # 
and then uses the thermocouple characteristic equation (Eq #) 
to convert the voltage into temperature. 

𝑉 = 𝐴𝑖𝑛 ×
𝐴𝑟𝑒𝑓

𝐴𝐷𝐶𝑟𝑒𝑠
2 − 1

(2) 

Where V is the thermocouple voltage, 𝐴𝑖𝑛 ∈ [0,1023] ∩
𝑁 is the analog input from the corresponding Arduino Pin, 
𝐴𝑟𝑒𝑓  is the Voltage reference of the analog input of the 

Arduino (Logic HIGH ~ 5.0V), and ADCres is the Arduino’s 
Analog to Digital Converter Resolution, in this case it is fixed 
to 10 as it is a 10-bit ADC.  

Furthermore, the thermocouple contains a rolling average 
function. The user can define the maximum number of data 
points (N) to be included in the average in the constructor 
(default is 5), and a dynamically allocated array is created to 
store the last specified number of data points. When an the 
method readTemp() is run, the new value measured is pushed 
in the array, as the first element, while the last gets discarded. 
The average value changes iteratively according to Eq #. 

𝑇̅ =
𝑇0 − 𝑇𝑁−1

𝑁
(3) 

Another method void predict(int t) is used to predict the 
temperature of the thermocouple according to its gradient in 
time int t measured in milliseconds. The gradient is calculated 
using Eq #. 

ΔΤ

Δ𝑡
=

𝑇0 − 𝑇𝑁−1

𝛿𝑡
(4) 

Where δt =  N ∗ tres, tres = 10
𝑚𝑠

𝑒𝑙𝑒𝑚𝑒𝑛𝑡
, and 𝑇0  is the 

current temperature. 

As a result, the predicted temperature in time t 
milliseconds is calculated by Eq #. 

𝑇(𝑡) =
Δ𝑇

Δ𝑡
× 𝑡 + 𝑇0 (5) 

B. Peltier 

The Peltier class is used to control both types of Peltier 
cells (i.e. T1 and T2). It incorporates a Boolean variable H-
Bridge that when true it is able to drive a peltier connected to 
the custom H-Bridge driver (Section VIII, part #) specifically 
2 Direction Pin Driver, and when false it is able to drive a 
peltier that is connected to a driver with Enable and Direction 
pins, like the DRV8838 used in the final system for controlling 
T1.  

Each instance of the Peltier Class contains a reference to a 
Thermocouple object, which corresponds to the thermocouple 
physically attached to the Peltier cell. To heat up the cell, the 
method void heat(float targetTemp) has the following 
pseudocode (The class variable THRESHOLD is defined with 
the instantiation of the object): 



START heat 
 IMPORT targetTemp 
 temp <- Thermocouple.read() 
  
 BOOLEAN peltierState <- |targetTemp - temp| > THRESHOLD 
 BOOLEAN reverseState <- targetTemp < temp 
  
 IF H-Bridge IS TRUE 
  SET peltierPin TO peltierState 
  SET reversePin TO reverseState 
 
 ELSE 
  SET peltierPin TO peltierState*reverseState 
  SET reversePin TO peltierState*(NOT reverseState) 
END heat 

This code allows the heating up of the Peltier unit for both 
types of drivers. As a result, the following Truth table (table 
#) can be constructed for Driver Carriers (H-Bridge = false) 
and H-Bridge drivers (H-Bridge = true), showing the 
direction of the motor according to the target temperature 
𝑇𝑡𝑎𝑟𝑔𝑒𝑡  and the current temperature 𝑇0.  

TABLE II.  MOTOR DIRECTION TRUTH TABLE 

Scenario 

Driver Carrier H-Bridge Driver 

OUT Peltier 

Pin 

Reverse 

Pin 

Peltier 

Pin 

Reverse 

Pin 

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 < 𝑇0 AND 

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

> 𝑇𝐻𝑅  

HIGH LOW LOW HIGH COOL 

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 > 𝑇0 AND 

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

> 𝑇𝐻𝑅 

HIGH HIGH HIGH LOW HEAT 

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 > 𝑇0 AND 

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

< 𝑇𝐻𝑅 

LOW LOW LOW LOW IDLE 

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 < 𝑇0 AND 

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

< 𝑇𝐻𝑅 

LOW HIGH LOW LOW IDLE 

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇0 AND 

|𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇0|

< 𝑇𝐻𝑅 

LOW LOW LOW LOW IDLE 

 

The Peltier Class also implements a method that would 
allow the cell to linearly ramp from a one temperature 𝑇𝑖 to 
another 𝑇𝑓  in time t milliseconds. This functionality is 

implemented in runtime without delay() so that it can be non-
intrusive to the rest of the program running in the Arduino. A 
function void rampSet(float Ti, float Tf, int t) was 
implemented so that it can be called once and set up the 
parameters for a particular ramp. Then, in the body of the loop, 
the function void ramp() is called in order to heat the peltier to 
the appropriate value at the time it’s called. The pseudocode 
for the ramp() function is seen below: 

START ramp 
 IF onRamp IS TRUE //class variable onRamp is set true when a  
   //ramp is set, and false when a ramp is  
   //finished 
 currentTemp <- Thermocouple.read() 
 tempDifference <- Tf – Ti 
 
 // MILLIS() is a function of the Arduino API that returns the time 

// from the moment the program started running in milliseconds 
 // class variable initialTime is set to the MILLIS() when the  
 // rampSet() function was called. 
 targetTemp <- ((MILLIS() – initialTime) * tempDifference) / t 
 
 heat(targetTemp) 
 
 IF (targetTemp < toTemp) OR (tempDiff > 0) 
  onRamp <- false 
END ramp 

C. Motor 

The Motor Class is a very simple driver class for a motor 
connected directly to one PWM pin of the Arduino with an 
NPN Logic level transistor or a motor driver that is controlled 
by one pin (i.e. A driver carrier whose Direction or Phase pin 
is pulled to logic LOW or logic HIGH) connected to it. 

The motor class contains a void drive(int PWM) method, 
that drives the writes the equivalent PWM signal to the motor 
pin. 

D. Controller 

The controller Class is designed to standardize the way of 
communication between the control application and the 
Arduino. The communication at both ends happens through 
the Serial port of the computer that the Arduino is connected 
to. This sketch is designed to read and interpret string 
commands of particular format send in the serial port by the 
control application (See control application in Section IX), 
and then send the target temperature of all the peltier cells, as 
well as their current temperature to be graphed. 

The way that the interpretation of commands work is by 
decoding a very specific structure. The command structure 
and function is shown in table #. 

TABLE III.  COTROLLER COMMANDS 

Command ID Function Callback 

H <peltier> T <temp> E H 

Heats a the peltier cell 
int: <peltier> to 

temperature float: 

<temp> 

heat() 

I <peltier> E I 
Set peltier int: 

<peltier> to idle mode 
Idle() 

R <peltier> F <Ti> T 

<Tf> I <time> E 
R 

Ramp peltier int: 

<peltier> from float: 

<Ti> to float: <Tf> in 

time int:<time> ms 

ramp() 

A <peltier1> <peltier2> 

H <temp1> C <temp2> 

T <time> E 

A 

Alternate Rampling 
between <peltier1> 

and <peltier2> in time 

int: <time> ms 

autoRam

p() 

V <peltier> T <PWM> V 

Vibrate the motor of 

peltier int:<peltier> at 
int: <PWM> 

vibrate() 

 

As it can be seen in table # the controller commands all 
have a unique 1-letter identifier at the beginning used to 
callback the relevant function that later decodes the rest of the 
command String and performs the appropriate action. All the 
commands are terminated with the character E, so that the 
Arduino will only empty its Serial Input Buffer once it has 
detected a complete command. This way if more or less than 
one commands are flushed in the buffer during the time the 
Arduino is checking for it, it will act appropriately to either 
wait or discard the command. The commands are parsed with 
string methods, by identifying a control character (e.g. ‘T’, 
‘F’, etc.), then reading the value from the first space (‘ ’) after 
it to the second one. The substring is then parsed to the 
equivalent data type using native methods, and then it is used 
in the context of the appropriate command.  

The controller class contains dynamically allocated arrays 
of 4 types: 

1) Peltier: That contains Peltier instances corresponding 

to the peltiers connected to the arduino 

 



2) Thermocouple: That contains Thermocouple instances 

corresponsing to the thermocuples connected to each peltier 

 

3) Motor: That contains Motor instances corresponding 

to the motors at each peltier cell aassembly 

 

4) PeltierControl: this is an array of a custom struct that 

contains the appropriate variables to control each peltier (the 

struct is seen in the code below.) 

 

 

It is worth mentioning that the dynamic allocation is not 
implemented using the keywords new and delete, as they are 
not supported by the Arduino API. Instead, the functions 
malloc() and free() are used to assign and free memory space 
to pointers. 

VIII. CIRCUITS 

A. Circuit for T1 Arrangment 

To control T1 an Arduino Mega Microcontroller was 
preferred because of its high amount of Pulse Width 
Modulation (PWM) Enabled pins, that can be used for driving 
the motors. Each motor needs only one PWM pin to control it 
that is directly connected through a 1KΩ resistor to the base 
of a 2N2222 logic level NPN transistor. The collector is 
connected to one end of the motor, while the other end is 
connected to an external 4.8V power supply. The emitter is 
connected directly to the common ground of the circuit. A 
diode was added between the terminals of the motor to prevent 
back voltage (Fig. 8). The motor circuit can be repeated as 
many times as needed for the number of peltier units 
connected to the microcontroller. 

The T1 was controlled with a low voltage, high current 
motor driver carrier, such as the dual channel DRV8833 or the 
single channel DRV8838. In the current schematic the 
DRV8833 is shown (Fig. 8). The ends of the T1 are connected 
to the output pins of the one channel of the driver and two 
digital pins were connected to the input channel as shown in 
Fig. 8. One of the pins is controlling the phase of the T1 (i.e. 
the direction of current flow), the other is controlling the 
power (i.e. Turning the motor on or off).  

Finally, an AD8495 thermocouple amplifier was used to 
read the thermocouple output so that it can be read by the 
analog pins of the Arduino. It is worth mentioning that the 
reason why the motors are connected to external power 
supplies is because the Arduino by itself had a power limit that 
was reached when driving the Motors to logic High. This 
meant that the voltage of the microcontroller would 
momentarily drop to maintain the current flow. This drop 
would affect the voltage coming to the amplifier of the 
thermocouples introducing an extra instability in the output. 
As a result, whenever the motors were in use the thermocouple 
output would introduce large fluctuations (±5 ºC) in their 

readings. Therefore, initially, a variable capacitor was placed 
between the +V and GND terminals of the microcontroller to 
smooth out the fluctuations. However, even though the 
voltage was not fluctuating, it would still drop an average of 
0.1 V when the motor was used. As a result, it was decided to 
use an external power supply for the motors and that fixed the 
fluctuation problem.  

 

Fig. 8. Circuit schematic for Peltier Cell Type 1 (T1) control. All the 

elements are included except the thermocouples that are connected directly 

to the inputs of the two AD8495 amplifier units. The amplifier has an 

embedded temperature sensor for standardising so that the thermocouple 

does not need to be diped in ice cold water for reference. The cirucit shown 

is for two peltier Elements with motors and tehrmocouples. 

B. Custom H-Bridge Driver for T2 

Peltier Cell T2 can draw current up to 7.0 A at 2.0 V, this 
characteristic meant that it was really hard to find a 
commercial driver that could deliver such a high current at 
these low voltages. Therefore, a custom driver was designed 
using N-Type logic level Mosfets (IRLB8721). At this point 
is worth mentioning that, ideally, replacing two of the four 
IRLB8721 Mosfets with 2 PNP Mosfets with a threshold 
voltage at around 1.4 ~ 2.0 Volts (𝑉𝑡ℎ ∈ [1.4, 2.0] 𝑉), as they 
can be driven with the voltage output of the peltier unit power 
supply (Examples of such Mosfets include: SPU09P06PL, 
SFT1341-E, or 2SJ681(Q)). Since there was a shortage of 
such specific components the circuit seen in Fig. 9 was 
designed and built. The H-Bridge driver works at logic level 
with two pins from the Arduino, that drive the cell as seen in 
Truth table #. A PCP was created for the circuit a, as seen in 
Fig. 9.  

 

//Assistive data structure for the Controller Class 

struct PeltierControl{ 

    bool heat; 

    bool idle; 

    bool autoRamp; 

    bool wait; 

    float targetTemp; 

    float inTime; 

    int rampWith; 

    unsigned long prevTime; 

}; 
 



Fig. 9. Custom H-Bridge Driver cirucit. The 4 Mosfters are logic level and 

can be directly controlled through the arduino Digital Pins. Each pin output 

is attached with a pulldown resistor that connects the gate to the ground. 

 

Fig. 10. The PCB CAD output of the circuitboard of the circuit shown in Fig. 

9. The board has a GND poor in both sides so that to minimise the 

connections needed. The poor is not shown in the diagram. 

C. Circuit for T2 Arrangement 

For the circuit of T2 the thermocouples and motors are 
connected in a similar fashion in seen in Fig. 9. The peltier 
cells, however, are driven using the custom H-Bridge driver 
seen in Section # Part #, where the 2.0 V power Supply is 
connected to the VCC pin, the ground of the power supply is 
connected to the ground of the Arduino and the GND pin of 
the driver. Then two digital pins from the are connected 
directly from the Arduino to the drivers IN1 and IN2 pins. The 
T2’s terminals are connected to the M+ and M- of the driver.  

IX. CONTROL APPLICATION 

To effectively control the peltier Cells a control 
application was developed in Java, so that it is platform 
independent. The application, “Grapher MK3,” includes a 
graph element at the top that directly reads the output from the 
Arduino through the Serial port. These values are the reading 
from the thermocouple of all the connected Peltier Cells, and 
the target temperature of all the cells. At the left side there are 
numbered circular elements that change transparency 
according to the corresponding vibration motor.  

Below there is a series of control elements that set the 
temperature of each peltier accordingly. Below that there are 
two graphs that can be altered so that to send a real-time 
temperature and/or vibration change to the Arduino. The 
pulses sent, are saved as .txt files using a native file dialog and 
can be loaded back for easy and fast access during 
psychophysical experiments. The application also possesses a 
limited command line interface for the commands shown in 
Appendix 5, that are useful in controlling various features of 
the application. The application is fully customizable by 
setting up the port using the PORT command, and by setting 
up the number of cells connected to the Arduino using the 
PELTIERNUM command. 

 

Fig. 11. A screencast of the Control Application Graphical User Interface 

(GUI). At the top is the part where the output from the arduino is projected, 
using the graph and the numbered lights. The elements at the top (i.e. sliders, 

buttons, etc.) are used to directly control the attributes of the connected 

Peltier Cells or Vibration Motors. The bottom section is used to create graphs 

designed to be send to the arduino directly. The lines snap to the grid to ease 

with the design process.  

X. IMPLICATIONS FOR FURTHER RESEARCH 

To further develop this project, it is suggested that a driver 
for the large Peltier Cells is created using the PNP Mosfets 
previously described with two optocouplers controlling them 
to isolate the circuit. Furthermore, a substitution of the 
heatsink size and/or material would be appropriate to prevent 
the self-destructive behavior of the peltier Unit. Furthermore, 
the application should be further optimized after undergoing 
some usage testing during true experimental procedures, to 
optimize the workflow, and minimize the setup time. Also, an 
alternative for the thermocouple as a means of measuring 
temperature should be explored to minimize the top ledge 
footprint of the unit. It is suggested that either the 
thermocouple is heated and pushed thought the plastic 
insulation on the underside of the top face of the Peltier Cell.  
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